Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Am Chem Soc ; 143(33): 12930-12934, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1358340

ABSTRACT

The main protease from SARS-CoV-2 is a homodimer. Yet, a recent 0.1-ms-long molecular dynamics simulation performed by D. E. Shaw's research group shows that it readily undergoes a symmetry-breaking event on passing from the solid state to aqueous solution. As a result, the subunits present distinct conformations of the binding pocket. By analyzing this long simulation, we uncover a previously unrecognized role of water molecules in triggering the transition. Interestingly, each subunit presents a different collection of long-lived water molecules. Enhanced sampling simulations performed here, along with machine learning approaches, further establish that the transition to the asymmetric state is essentially irreversible.


Subject(s)
SARS-CoV-2/enzymology , Viral Matrix Proteins/chemistry , Water/chemistry , COVID-19/pathology , COVID-19/virology , Crystallography, X-Ray , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/metabolism , SARS-CoV-2/isolation & purification , Viral Matrix Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL